3.518 \(\int \sqrt {3-4 \cos (c+d x)} \cos (c+d x) \, dx\)

Optimal. Leaf size=80 \[ -\frac {\sqrt {7} F\left (\frac {1}{2} (c+d x+\pi )|\frac {8}{7}\right )}{6 d}-\frac {\sqrt {7} E\left (\frac {1}{2} (c+d x+\pi )|\frac {8}{7}\right )}{2 d}+\frac {2 \sin (c+d x) \sqrt {3-4 \cos (c+d x)}}{3 d} \]

[Out]

1/2*(sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)*EllipticE(cos(1/2*d*x+1/2*c),2/7*14^(1/2))/d*7^(1/2)+1/6*(
sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)*EllipticF(cos(1/2*d*x+1/2*c),2/7*14^(1/2))/d*7^(1/2)+2/3*sin(d*
x+c)*(3-4*cos(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 80, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {2753, 2752, 2662, 2654} \[ -\frac {\sqrt {7} F\left (\frac {1}{2} (c+d x+\pi )|\frac {8}{7}\right )}{6 d}-\frac {\sqrt {7} E\left (\frac {1}{2} (c+d x+\pi )|\frac {8}{7}\right )}{2 d}+\frac {2 \sin (c+d x) \sqrt {3-4 \cos (c+d x)}}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[3 - 4*Cos[c + d*x]]*Cos[c + d*x],x]

[Out]

-(Sqrt[7]*EllipticE[(c + Pi + d*x)/2, 8/7])/(2*d) - (Sqrt[7]*EllipticF[(c + Pi + d*x)/2, 8/7])/(6*d) + (2*Sqrt
[3 - 4*Cos[c + d*x]]*Sin[c + d*x])/(3*d)

Rule 2654

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a - b]*EllipticE[(1*(c + Pi/2 + d*x)
)/2, (-2*b)/(a - b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a - b, 0]

Rule 2662

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c + Pi/2 + d*x))/2, (-2*b
)/(a - b)])/(d*Sqrt[a - b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a - b, 0]

Rule 2752

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 2753

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(d
*Cos[e + f*x]*(a + b*Sin[e + f*x])^m)/(f*(m + 1)), x] + Dist[1/(m + 1), Int[(a + b*Sin[e + f*x])^(m - 1)*Simp[
b*d*m + a*c*(m + 1) + (a*d*m + b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*
c - a*d, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] && IntegerQ[2*m]

Rubi steps

\begin {align*} \int \sqrt {3-4 \cos (c+d x)} \cos (c+d x) \, dx &=\frac {2 \sqrt {3-4 \cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2}{3} \int \frac {-2+\frac {3}{2} \cos (c+d x)}{\sqrt {3-4 \cos (c+d x)}} \, dx\\ &=\frac {2 \sqrt {3-4 \cos (c+d x)} \sin (c+d x)}{3 d}-\frac {1}{4} \int \sqrt {3-4 \cos (c+d x)} \, dx-\frac {7}{12} \int \frac {1}{\sqrt {3-4 \cos (c+d x)}} \, dx\\ &=-\frac {\sqrt {7} E\left (\frac {1}{2} (c+\pi +d x)|\frac {8}{7}\right )}{2 d}-\frac {\sqrt {7} F\left (\frac {1}{2} (c+\pi +d x)|\frac {8}{7}\right )}{6 d}+\frac {2 \sqrt {3-4 \cos (c+d x)} \sin (c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.10, size = 94, normalized size = 1.18 \[ \frac {12 \sin (c+d x)-8 \sin (2 (c+d x))-7 \sqrt {4 \cos (c+d x)-3} F\left (\left .\frac {1}{2} (c+d x)\right |8\right )+3 \sqrt {4 \cos (c+d x)-3} E\left (\left .\frac {1}{2} (c+d x)\right |8\right )}{6 d \sqrt {3-4 \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[3 - 4*Cos[c + d*x]]*Cos[c + d*x],x]

[Out]

(3*Sqrt[-3 + 4*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 8] - 7*Sqrt[-3 + 4*Cos[c + d*x]]*EllipticF[(c + d*x)/2, 8]
 + 12*Sin[c + d*x] - 8*Sin[2*(c + d*x)])/(6*d*Sqrt[3 - 4*Cos[c + d*x]])

________________________________________________________________________________________

fricas [F]  time = 1.09, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\sqrt {-4 \, \cos \left (d x + c\right ) + 3} \cos \left (d x + c\right ), x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(3-4*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(-4*cos(d*x + c) + 3)*cos(d*x + c), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {-4 \, \cos \left (d x + c\right ) + 3} \cos \left (d x + c\right )\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(3-4*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(-4*cos(d*x + c) + 3)*cos(d*x + c), x)

________________________________________________________________________________________

maple [A]  time = 0.74, size = 231, normalized size = 2.89 \[ \frac {\sqrt {-\left (8 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-7\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (64 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {56 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-7}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 \sqrt {14}}{7}\right )+3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {56 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-7}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 \sqrt {14}}{7}\right )-8 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6 \sqrt {8 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-8 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+7}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(3-4*cos(d*x+c))^(1/2),x)

[Out]

1/6*(-(8*cos(1/2*d*x+1/2*c)^2-7)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(64*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(sin(
1/2*d*x+1/2*c)^2)^(1/2)*(56*sin(1/2*d*x+1/2*c)^2-7)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2/7*14^(1/2))+3*(sin(1/
2*d*x+1/2*c)^2)^(1/2)*(56*sin(1/2*d*x+1/2*c)^2-7)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2/7*14^(1/2))-8*sin(1/2*d
*x+1/2*c)^2*cos(1/2*d*x+1/2*c))/(8*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(-8*cos
(1/2*d*x+1/2*c)^2+7)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {-4 \, \cos \left (d x + c\right ) + 3} \cos \left (d x + c\right )\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(3-4*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-4*cos(d*x + c) + 3)*cos(d*x + c), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \cos \left (c+d\,x\right )\,\sqrt {3-4\,\cos \left (c+d\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)*(3 - 4*cos(c + d*x))^(1/2),x)

[Out]

int(cos(c + d*x)*(3 - 4*cos(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {3 - 4 \cos {\left (c + d x \right )}} \cos {\left (c + d x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(3-4*cos(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(3 - 4*cos(c + d*x))*cos(c + d*x), x)

________________________________________________________________________________________